Part Number Hot Search : 
LBS11401 PQ60018 IC106D 07102 16H1A 805SH N7002 00203
Product Description
Full Text Search
 

To Download IRLR3915 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) 61 i d @ t c = 100c continuous drain current, v gs @ 10v (see fig.9) 43 a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) 30 i dm pulsed drain current   240 p d @t c = 25c power dissipation 120 w linear derating factor 0.77 w/c v gs gate-to-source voltage 16 v e as single pulse avalanche energy  200 mj e as (6 sigma) single pulse avalanche energy tested value  600 i ar avalanche current  see fig.12a, 12b, 15, 16 a e ar repetitive avalanche energy  mj t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c IRLR3915 irlu3915 absolute maximum ratings parameter typ. max. units r jc junction-to-case ??? 1.3 r ja junction-to-ambient (pcb mount)  ??? 50 c/w r ja junction-to-ambient??? 110 thermal resistance v dss = 55v r ds(on) = 14m ? i d = 30a description specifically designed for automotive applications, thi power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this product are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these features com- bine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. s d g features advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax d-pak IRLR3915 i-pak irlu3915 201408016 1 www.kersemi.com
 parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c, i s = 30a, v gs = 0v  t rr reverse recovery time ??? 62 93 ns t j = 25c, i f = 30a, v dd = 25xjkl v q rr reverse recovery charge ??? 110 170 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 55 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.057 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? 12 14 v gs = 10v, i d = 30a  ??? 14 17 v gs = 5.0v, i d = 26a  v gs(th) gate threshold voltage 1.0 ??? 3.0 v v ds = 10v, i d = 250a g fs forward transconductance 42 ??? ??? s v ds = 25v, i d = 30a ??? ??? 20 a v ds = 55v, v gs = 0v ??? ??? 250 v ds = 55v, v gs = 0v, t j = 125c gate-to-source forward leakage ??? ??? 200 v gs = 16v gate-to-source reverse leakage ??? ??? -200 na v gs = -16v q g total gate charge ??? 61 92 i d = 30a q gs gate-to-source charge ??? 9.0 14 nc v ds = 44v q gd gate-to-drain ("miller") charge ??? 17 25 v gs = 10v  t d(on) turn-on delay time ??? 7.4 ??? v dd = 28v t r rise time ??? 51 ??? i d = 30a t d(off) turn-off delay time ??? 83 ??? r g = 8.5 ? t f fall time ??? 100 ??? v gs = 10v  between lead, ??? ??? nh 6mm (0.25in.) from package and center of die contact c iss input capacitance ??? 1870 ??? v gs = 0v c oss output capacitance ??? 390 ??? v ds = 25v c rss reverse transfer capacitance ??? 74 ??? pf ? = 1.0mhz, see fig. 5 c oss output capacitance ??? 2380 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 290 ??? v gs = 0v, v ds = 44v, ? = 1.0mhz c oss eff. effective output capacitance  ??? 540 ??? v gs = 0v, v ds = 0v to 44v electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance ??? ??? s d g i gss ns 4.5 7.5 i dss drain-to-source leakage current s d g source-drain ratings and characteristics 61 240  m ? 201408016 2 www.kersemi.com
fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.001 0.01 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.0v 20s pulse width tj = 25c vgs top 15v 10v 5.0v 3.0v 2.7v 2.5v 2.25v bottom 2.0v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.0v 20s pulse width tj = 175c vgs top 15v 10v 5.0v 3.0v 2.7v 2.5v 2.25v bottom 2.0v 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 v gs , gate-to-source voltage (v) 0.10 1.00 10.00 100.00 1000.00 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 20s pulse width fig 4. typical forward transconductance vs. drain current 0 102030405060 i d ,drain-to-source current (a) 0 10 20 30 40 50 60 70 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c  201408016 3 www.kersemi.com
fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 10 20 30 40 50 60 70 0 2 4 6 8 10 12 q , total gate charge (nc) v , gate-to-source voltage (v) g gs i = d 30a v = 11v ds v = 27v ds v = 44v ds 0.1 1 10 100 1000 0.0 0.5 1.0 1.5 2.0 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 175 c j t = 25 c j 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec  201408016 4 www.kersemi.com
fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 175 0 10 20 30 40 50 60 70 t , case temperature ( c) i , drain current (a) c d limited by package 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 61a  201408016 5 www.kersemi.com
q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 0 100 200 300 400 500 starting tj, junction temperature ( c) e , single pulse avalanche energy (mj) as i d top bottom 12a 21a 30a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a  201408016 6 www.kersemi.com
fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 160 180 200 220 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 30a  201408016 7 www.kersemi.com
fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms  201408016 8 www.kersemi.com
 

   
   
   

 6.73 (.265) 6.35 (.250) - a - 4 1 2 3 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 4.57 (.180) 2.28 (.090) 2x 1.14 (.045) 0.76 (.030) 1.52 (.060) 1.15 (.045) 1.02 (.040) 1.64 (.025) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 6.45 (.245) 5.68 (.224) 0.51 (.020) min. 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain 10.42 (.410) 9.40 (.370) notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions shown are before solder dip, solder dip max. +0.16 (.006). i n t e r n a t i o n a l l o g o r e c t i f i e r 3 4 1 2 i r f u 1 2 0 9 1 6 a l o t c o d e a s s e m b l y e x a m p l e : w i t h a s s e m b l y t h i s i s a n i r f r 1 2 0 y e a r 9 = 1 9 9 9 d a t e c o d e l i n e a w e e k 1 6 i n t h e a s s e m b l y l i n e " a " a s s e m b l e d o n w w 1 6 , 1 9 9 9 l o t c o d e 1 2 3 4 p a r t n u m b e r  201408016 9 www.kersemi.com
 
   
   
   
  6.73 (.265) 6.35 (.250) - a - 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 2.28 (.090) 1.14 (.045) 0.76 (.030) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions show n are before solder dip, solder dip max. +0.16 (.006). 9.65 (.380) 8.89 (.350) 2x 3x 2.28 (.090) 1.91 (.075) 1.52 (.060) 1.15 (.045) 4 1 2 3 6.45 (.245) 5.68 (.224) 0.58 (.023) 0.46 (.018)  201408016 10 www.kersemi.com
 

  
   
  tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.45mh, r g = 25 ? , i as = 30a, v gs =10v. part not recommended for use above this value.  i sd 30a, di/dt 280a/s, v dd v (br)dss , t j 175c.  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.  when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994. 201408016 11 www.kersemi.com 


▲Up To Search▲   

 
Price & Availability of IRLR3915

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X